Acadia Valley	Acadia Valley
Acadia Valley	Acadia Valley

Acme		Acme	
Acme	$\begin{aligned} & \Delta \\ & \infty \\ & \mathbf{n} \\ & \Gamma \\ & \infty \end{aligned}$	Acme	
Acme	$\begin{aligned} & \vec{D} \\ & \boldsymbol{s} \\ & \mathbf{S} \\ & \boldsymbol{\infty} \end{aligned}$	Acme	¢ O 3 ¢
Acme	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{\sigma} \end{aligned}$	Acme	
Acme	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Acme	

Airdrie ILL	$\begin{aligned} & 8 \\ & 0 \\ & 3 \\ & \vdots \\ & \infty \end{aligned}$	Airdrie ILL	d 0 3 8
Airdrie ILL	$\begin{aligned} & \text { B } \\ & \boldsymbol{n} \\ & \boldsymbol{B} \\ & \boldsymbol{\infty} \end{aligned}$	Airdrie ILL	
Airdrie ILL		Airdrie ILL	8 0 3 Γ
Airdrie ILL		Airdrie ILL	B 0 3 Γ
Airdrie ILL	$\begin{aligned} & B \\ & \infty \\ & 3 \\ & \infty \\ & \infty \end{aligned}$	Airdrie ILL	B 0 3

Banff	$\begin{aligned} & D \\ & \infty \\ & \mathbf{n} \\ & 1 \\ & \infty \end{aligned}$	Banff	
Banff	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{s} \\ & \mathbf{S} \\ & \boldsymbol{\sigma} \end{aligned}$	Banff	
Banff	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{\infty} \end{aligned}$	Banff	
Banff	$\begin{aligned} & \vec{D} \\ & \infty \\ & \mathbf{S} \\ & \boldsymbol{r} \end{aligned}$	Banff	B O 3 ¢
Banff	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{\infty} \end{aligned}$	Banff	3 0 3 \sim ∞

Beiseker	$\begin{aligned} & \vec{B} \\ & \boldsymbol{n} \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Beiseker	8 0 3 Γ
Beiseker	B 0 3 Γ 0	Beiseker	
Beiseker		Beiseker	B ¢ ¢ ¢
Beiseker	$\begin{aligned} & \Delta \\ & \infty \\ & 3 \\ & \Gamma \\ & \infty \end{aligned}$	Beiseker	
Beiseker		Beiseker	

Berry Creek		Berry Creek
Berry Creek	¢	Berry Creek
Berry Creek	-	Berry Creek
Berry Creek	8 0 3 0 0	Berry Creek
Berry Creek	¢	Berry Creek

Bighorn	8 0 3 6 6	Bighorn
Bighorn		Bighorn
Bighorn		Bighorn
Bighorn	$\begin{aligned} & 8 \\ & 6 \\ & \vdots \\ & 6 \\ & 6 \end{aligned}$	Bighorn
Bighorn	$\begin{aligned} & s \\ & \infty \\ & \vec{s} \\ & \stackrel{3}{\omega} \end{aligned}$	Bighorn

Bragg Creek	$\begin{aligned} & D \\ & \boldsymbol{\infty} \\ & 3 \\ & \boldsymbol{B} \end{aligned}$	Bragg Creek	D 0 3 \sim \sim
Bragg Creek	$\begin{aligned} & D \\ & \boldsymbol{\infty} \\ & 3 \\ & \boldsymbol{j} \end{aligned}$	Bragg Creek	B \sim 3 \sim \sim
Bragg Creek	$\begin{aligned} & D \\ & \boldsymbol{\infty} \\ & \mathbf{B} \\ & \boldsymbol{\omega} \end{aligned}$	Bragg Creek	D 0 3 \sim 0
Bragg Creek	$\begin{aligned} & D \\ & \boldsymbol{\omega} \\ & \mathbf{B} \\ & \boldsymbol{\omega} \end{aligned}$	Bragg Creek	P \sim 3 \sim
Bragg Creek	$\begin{aligned} & D \\ & \boldsymbol{C} \\ & 3 \\ & \boldsymbol{B} \end{aligned}$	Bragg Creek	B 0 3 \boldsymbol{O}

Canmore	$\begin{aligned} & B \\ & \infty \\ & 3 \\ & \vdots \\ & \infty \end{aligned}$	Canmore	8 0 3 Γ 8
Canmore	$\begin{aligned} & \mathbf{B} \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Canmore	B 0 3 ¢
Canmore	$\begin{aligned} & \vec{B} \\ & \infty \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Canmore	¢ ¢ 3 Γ 0
Canmore	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & i \\ & \infty \end{aligned}$	Canmore	
Canmore	$\begin{aligned} & \vec{B} \\ & \boldsymbol{0} \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Canmore	

Carbon	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{n} \end{aligned}$	Carbon	B 0 3 1
Carbon	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Carbon	
Carbon	$\begin{aligned} & \text { B } \\ & \mathbf{n} \\ & \boldsymbol{B} \\ & \infty \end{aligned}$	Carbon	
Carbon	$\begin{aligned} & 8 \\ & 0 \\ & 3 \\ & \sqrt{\infty} \\ & 0 \end{aligned}$	Carbon	B 0 3 0
Carbon	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{n} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Carbon	

Carseland	$\begin{aligned} & \Delta \\ & 0 n \\ & \mathbf{3} \\ & \boldsymbol{\omega} \end{aligned}$	Carseland	¢
Carseland	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{\infty} \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Carseland	8 0 3 5 0
Carseland	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Carseland	d 0 3 Γ 0
Carseland	$\begin{aligned} & B \\ & 0 \\ & 3 \\ & \sqrt{\infty} \\ & \infty \end{aligned}$	Carseland	\$
Carseland		Carseland	¢ O 3 ¢

Chestermere	¢	Chestermere
Chestermere	0	Chestermere
Chestermere	0	Chestermere
Chestermere	6	Chestermere
Chestermere		Chestermere

Cochrane	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Cochrane	
Cochrane	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Cochrane	¢
Cochrane	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{r} \end{aligned}$	Cochrane	
Cochrane	$\begin{aligned} & \mathbf{D} \\ & 0 \\ & \mathbf{3} \\ & 1 \\ & \infty \end{aligned}$	Cochrane	
Cochrane	$\begin{aligned} & \mathbf{B} \\ & 0 \\ & \mathbf{3} \\ & \boldsymbol{\sigma} \end{aligned}$	Cochrane	3 0 3 0

Consort	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Consort	¢
Consort	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{r} \end{aligned}$	Consort	¢ ¢ 3 ¢
Consort	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{\infty} \end{aligned}$	Consort	¢
Consort		Consort	¢
Consort	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & 1 \\ & \infty \end{aligned}$	Consort	

Crossfield	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Crossfield	
Crossfield	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Crossfield	
Crossfield	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{\infty} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Crossfield	
Crossfield	$\begin{aligned} & B \\ & \infty \\ & 3 \\ & \sqrt{n} \\ & \infty \end{aligned}$	Crossfield	
Crossfield	$\begin{aligned} & 8 \\ & 0 \\ & 3 \\ & \\ & \infty \end{aligned}$	Crossfield	3 0 3 <0

Delia	$\begin{aligned} & B \\ & \infty \\ & 3 \\ & \sqrt{\infty} \end{aligned}$	Delia	
Delia	$\begin{aligned} & \vec{B} \\ & \infty \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Delia	
Delia	$\begin{aligned} & B \\ & 0 \\ & 3 \\ & \sqrt{6} \end{aligned}$	Delia	¢
Delia		Delia	3 0 3 ∞
Delia	$\begin{aligned} & B \\ & 0 \\ & 3 \\ & \sqrt{6} \end{aligned}$	Delia	3 0 3 0

Drumheller	$\begin{aligned} & B \\ & \infty \\ & \mathbf{S} \\ & \boldsymbol{\infty} \end{aligned}$	Drumheller	
Drumheller	$\begin{aligned} & B \\ & 0 \\ & 3 \\ & \infty \\ & \infty \end{aligned}$	Drumheller	
Drumheller	$\begin{aligned} & \vec{B} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Drumheller	\$
Drumheller	$\begin{aligned} & B \\ & 0 \\ & 3 \\ & \sqrt{n} \end{aligned}$	Drumheller	¢
Drumheller		Drumheller	

Empress	$\begin{aligned} & \mathbf{B} \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Empress	
Empress	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{r} \\ & \boldsymbol{\infty} \end{aligned}$	Empress	B 0 3 <0
Empress	$\begin{aligned} & 8 \\ & \infty \\ & 3 \\ & \Gamma \\ & \infty \end{aligned}$	Empress	3 03 3 0
Empress	$\begin{aligned} & \mathbf{B} \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{r} \end{aligned}$	Empress	
Empress	$\begin{aligned} & B \\ & \infty \\ & \mathbf{B} \\ & \boldsymbol{r} \\ & \boldsymbol{\infty} \end{aligned}$	Empress	b 0 3 Γ 0

Gleichen	$\begin{aligned} & B \\ & \infty \\ & 3 \\ & \vdots \\ & \infty \end{aligned}$	Gleichen	
Gleichen	$\begin{aligned} & B \\ & \infty \\ & \mathbf{B} \\ & \boldsymbol{r} \\ & \boldsymbol{\infty} \end{aligned}$	Gleichen	
Gleichen	$\begin{aligned} & \vec{B} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Gleichen	
Gleichen	$\begin{aligned} & B \\ & \infty \\ & 3 \\ & \vdots \\ & \infty \end{aligned}$	Gleichen	
Gleichen	$\begin{aligned} & B \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{n} \end{aligned}$	Gleichen	3 0 \vdots \sim

Hanna	$\begin{aligned} & \vec{B} \\ & \boldsymbol{0} \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Hanna	¢
Hanna		Hanna	¢
Hanna		Hanna	¢
Hanna	$\begin{aligned} & B \\ & \infty \\ & \mathbf{B} \\ & \underset{\infty}{\infty} \end{aligned}$	Hanna	¢
Hanna	$\begin{aligned} & B \\ & 0 \\ & 3 \\ & \end{aligned}$	Hanna	¢

High River	$\begin{aligned} & B \\ & \infty \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	High River	
High River	8 0 3 Γ 0	High River	
High River	$\begin{aligned} & B \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	High River	
High River	$\begin{aligned} & 8 \\ & 0 \\ & 3 \\ & 1 \\ & \infty \end{aligned}$	High River	
High River	3 0 3 $<$ 0	High River	

Hussar	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{\omega} \end{aligned}$	Hussar	
Hussar	$\begin{aligned} & \vec{~} \\ & \mathbf{n} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Hussar	¢ ¢ 3 Γ ∞
Hussar	$\begin{aligned} & \mathbf{b} \\ & \mathbf{e} \\ & \mathbf{l} \\ & \mathbf{e} \end{aligned}$	Hussar	
Hussar	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{\omega} \end{aligned}$	Hussar	B O 3 ¢
Hussar	$\begin{aligned} & b \\ & \infty \\ & \mathbf{s} \\ & \mathbf{c} \end{aligned}$	Hussar	3 0 3 \sim ∞

Irricana	$\begin{aligned} & B \\ & \infty \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Irricana	
Irricana	$\begin{aligned} & B \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Irricana	
Irricana	$\begin{aligned} & 8 \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Irricana	
Irricana	$\begin{aligned} & B \\ & \infty \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Irricana	¢ O 3 Co
Irricana	$\begin{aligned} & B \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{e} \end{aligned}$	Irricana	

Langdon	$$	Langdon
Langdon	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{n} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Langdon
Langdon	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & 1 \\ & \infty \end{aligned}$	Langdon
Langdon	$\begin{aligned} & \vec{B} \\ & \boldsymbol{0} \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Langdon
Langdon	$\begin{aligned} & B \\ & \infty \\ & 3 \\ & \sqrt{\infty} \end{aligned}$	Langdon

Linden	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{n} \\ & \mathbf{3} \\ & \boldsymbol{\sigma} \end{aligned}$	Linden	
Linden	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Linden	
Linden	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{\infty} \end{aligned}$	Linden	
Linden	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{\infty} \end{aligned}$	Linden	
Linden	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{\infty} \end{aligned}$	Linden	

Longview	$\begin{aligned} & D \\ & 0 \\ & 3 \\ & 1 \\ & \infty \end{aligned}$	Longview	8 0 3 0
Longview	$\begin{aligned} & \mathbf{D} \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Longview	
Longview	$\begin{aligned} & \mathbf{D} \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Longview	
Longview	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{e} \end{aligned}$	Longview	
Longview	$\begin{aligned} & \mathbf{D} \\ & 0 \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Longview	

Marigold HQ		Marigold HQ
Marigold HQ	¢	Marigold HQ
Marigold HQ		Marigold HQ
Marigold HQ		Marigold HQ
Marigold HQ	c	Marigold HQ

Marigold RELAIS Direct Services	0 3 $\mathbf{3}$ 6	Marigold RELAIS Direct Services	es
Marigold RELAIS Direct Services	$\begin{aligned} & \text { B } \\ & \text { S } \\ & \text { is } \end{aligned}$	Marigold RELAIS Direct Services	
Marigold RELAIS Direct Services	$\begin{aligned} & \text { B } \\ & \text { S } \\ & \text { is } \end{aligned}$	Marigold RELAIS Direct Services	3
Marigold RELAIS Direct Services	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { is } \end{aligned}$	Marigold RELAIS Direct Services	$\underline{1}$
Marigold RELAIS Direct Services	$\begin{aligned} & \text { B } \\ & \text { S } \\ & \text { is } \end{aligned}$	Marigold RELAIS Direct Services	3

Millarville	$\begin{aligned} & 8 \\ & 0 \\ & 3 \\ & 1 \\ & \infty \end{aligned}$	Millarville	
Millarville	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Millarville	
Millarville	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{\infty} \\ & \mathbf{S} \\ & \boldsymbol{\infty} \end{aligned}$	Millarville	
Millarville	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{\infty} \end{aligned}$	Millarville	
Millarville	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{\infty} \end{aligned}$	Millarville	

Morrin	$\begin{aligned} & 8 \\ & 0 \\ & 3 \\ & \Gamma \\ & \infty \end{aligned}$	Morrin	3 0 3
Morrin	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Morrin	
Morrin	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Morrin	
Morrin	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Morrin	
Morrin	$\begin{aligned} & B \\ & \infty \\ & \mathbf{n} \\ & \boldsymbol{r} \end{aligned}$	Morrin	8 0 3

Okotoks ILL	$\begin{aligned} & \infty \\ & \infty \\ & \mathbf{S} \\ & \boldsymbol{e} \end{aligned}$	Okotoks ILL	S S es
Okotoks ILL	$\begin{aligned} & \infty \\ & n_{n} \\ & n_{n} \end{aligned}$	Okotoks ILL	S $\substack{3 \\ 0}$
Okotoks ILL	$\begin{aligned} & s \\ & \infty \\ & \vdots \\ & e \\ & e \end{aligned}$	Okotoks ILL	
Okotoks ILL	$\begin{aligned} & 8 \\ & \infty \\ & \text { B } \\ & \text { in } \end{aligned}$	Okotoks ILL	Bn S Es
Okotoks ILL	$\begin{aligned} & s \\ & \infty \\ & \vdots \\ & \vdots \\ & e s \end{aligned}$	Okotoks ILL	

Oyen	$\begin{aligned} & B \\ & 0 \\ & 3 \\ & \Gamma \\ & 0 \end{aligned}$	Oyen	D \cdots 3 C
Oyen	$\begin{aligned} & \text { B } \\ & 0 \\ & 3 \\ & \boldsymbol{B} \\ & 0 \end{aligned}$	Oyen	B \cdots 3 C
Oyen	$\begin{aligned} & D \\ & \infty \\ & 3 \\ & \hdashline \\ & \infty \end{aligned}$	Oyen	B 3 \cdots \sim
Oyen	$\begin{aligned} & 1 \\ & \infty \\ & 3 \\ & 3 \\ & \infty \\ & \infty \end{aligned}$	Oyen	D \cdots 3 C
Oyen	$\begin{aligned} & B \\ & \infty \\ & 3 \\ & \hline \Gamma \\ & \infty \end{aligned}$	Oyen	8 08 3 8

Rockyford	8 3 3 1 6	Rockyford	B $\substack{3 \\ 1 \\ 6}$
Rockyford	8 0 3 6	Rockyford	
Rockyford	3 3 3 5	Rockyford	$\begin{array}{r}3 \\ 0 \\ 3 \\ \hline 6\end{array}$
Rockyford	$\begin{aligned} & \stackrel{B}{n} \\ & \substack{3 \\ \vdots \\ \hline} \end{aligned}$	Rockyford	B $\substack{3 \\ \hline 6 \\ 0}$
Rockyford	$\begin{aligned} & n \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	Rockyford	d $\substack { \text { a } \\ \begin{subarray}{c}{6{ \text { a } \\ \begin{subarray} { c } { 6 } } \\ {\hline}$

Rumsey	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 1 \\ & \infty \end{aligned}$	Rumsey	
Rumsey	$\begin{aligned} & \mathbf{D} \\ & 0 \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Rumsey	
Rumsey	$\begin{aligned} & \mathbf{D} \\ & \mathbf{n} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Rumsey	B O 3 ¢
Rumsey	$\begin{aligned} & \mathbf{D} \\ & 0 \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Rumsey	
Rumsey	$\begin{aligned} & \mathbf{D} \\ & 0 \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Rumsey	8 0 3 0

Sheep River	8 3 3 1 6	Sheep River	B $\substack{3 \\ \hline 1 \\ \hline}$
Sheep River		Sheep River	B $\substack { 3 \\ \begin{subarray}{c}{5{ 3 \\ \begin{subarray} { c } { 5 } } \end{subarray}$
Sheep River		Sheep River	\$
Sheep River	3 4 3 cs	Sheep River	B $\substack{3 \\ 3 \\ \hline 6}$
Sheep River	S	Sheep River	

Standard	8 0 3 1 6	Standard	
Standard	8 4 3 6	Standard	
Standard	8 0 3 6 6	Standard	8 0 3 68
Standard	$\begin{aligned} & B \\ & \infty \\ & \vdots \\ & \text { © } \end{aligned}$	Standard	8 0 3 0 0
Standard		Standard	8 0 3 6 6

Strathmore	$\begin{aligned} & 8 \\ & 0 \\ & 3 \\ & 1 \\ & \infty \end{aligned}$	Strathmore	8 0 3 0
Strathmore	$\begin{aligned} & \mathbf{D} \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Strathmore	
Strathmore	$\begin{aligned} & \mathbf{D} \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Strathmore	¢ 0 3 Γ
Strathmore	$\begin{aligned} & \mathbf{D} \\ & \infty \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Strathmore	¢ 0 3 Γ
Strathmore	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{n} \\ & \mathbf{3} \\ & \boldsymbol{\infty} \end{aligned}$	Strathmore	¢

Three Hills	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{s} \\ & \mathbf{3} \\ & \boldsymbol{r} \end{aligned}$	Three Hills	8 ¢ 3 Γ ∞
Three Hills	$\begin{aligned} & \mathbf{D} \\ & 0 \\ & \mathbf{n} \\ & 1 \\ & \infty \end{aligned}$	Three Hills	
Three Hills	$\begin{aligned} & \mathbf{B} \\ & \boldsymbol{\infty} \\ & \mathbf{B} \\ & \boldsymbol{\infty} \end{aligned}$	Three Hills	
Three Hills	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{r} \end{aligned}$	Three Hills	¢
Three Hills	$\begin{aligned} & \mathbf{D} \\ & \boldsymbol{0} \\ & \mathbf{3} \\ & \boldsymbol{c} \end{aligned}$	Three Hills	8 0 3

Trochu	$\begin{aligned} & B \\ & \infty \\ & \vdots \\ & \underset{\sim}{\infty} \end{aligned}$	Trochu	
Trochu	$\begin{aligned} & B \\ & 0 \\ & 3 \\ & \sqrt{6} \end{aligned}$	Trochu	¢
Trochu		Trochu	
Trochu	$\begin{aligned} & B \\ & \infty \\ & 3 \\ & \sqrt{6} \end{aligned}$	Trochu	¢
Trochu	$\begin{aligned} & B \\ & 0 \\ & 3 \\ & i \\ & \infty \end{aligned}$	Trochu	¢

Youngstown	8 3 3 1 6	Youngstown	8 0 3 6
Youngstown	3 0 3	Youngstown	
Youngstown	d 0 3 6 6	Youngstown	en $\substack{3 \\ 6 \\ \hline}$
Youngstown	$\begin{aligned} & \infty \\ & n_{n} \\ & i= \end{aligned}$	Youngstown	8 $\substack{8 \\ 3 \\ 0}$
Youngstown	$\begin{aligned} & \infty \\ & \infty \\ & \vdots \\ & 6 \\ & 6 \end{aligned}$	Youngstown	cos $\substack{3 \\ 6 \\ \hline}$

